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- INTRODUCTION
CONSIDER a random variable X which assumes the values x;, x5, *+* X
with probabilities p,, - px respectlvely such that p; > 0 for any
i=1,2, ----K and Z,' pi=1. Let p,”=2 p;x be the moment of

i=1

‘the n-th order about origin. Then it is plausible to infer that mot
more than K moments of X should be independent. In the following
we show that the moments of X satisfy a linear difference equation
with constant coefficients and of the K-th order. These constant co-
efficients depend only on x;, x,, ‘- xx and do not. involve the prob-
abilities. Using this result we obtain a difference equation for ~the
moments of the random variable X of the above type. It is also shown
that The cotiverse is also true. Thus if the moments of a random variable
‘satisfy a linear difference equation with constant coefficients and of
.order K, then the random variable must be of the above type.

2. Let X be the random variable with probability distribution
PIX="%]=p>0 j=12 K. Zp=1
- . ) , A o
Let p,’ = 2 P,x; be the n-th order moments about the origin.” Con-
C e S ' Lo

sider any set of (K + 1) consecutive moments ', p'at1 *** ntg); we
prove that such a set is linearly- dependent. “More precisely,

Theo;em —We can determlne a set of constants” (gy,” az, ay)
wh1ch depend only on x's such that for any 1nteger n =0 we have -

,U'”+K + al.“‘ n+i{—1 + e+ a,{-,L" = 0. . v o y (2)
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Proof—It means that we have to obtain a,, a,, ' - ax such that
T !=Z1' Xt +.a1 2 Pt A + aK;e’?f!" -
or o
,5 Ds 1#,"+K - apx L e aKx,"} — 0 U 3

This shows that if we choose (a;, a,, - ag) as the solutions of
K simultaneous equations, (for all n= 0)

xMHE axy Y gt =0 j=1,2, K @
then whatever be"pl, pg e 'p’K the condition (3) is satisfied.
. The above equatlons are equivalent to 7 -
XE 4 a4 ag =0 '.i=-1;r2-, K B

and (al, a,, *** ag) are the solutions. of (5).. The solutions. exist as the
determinant of the system of equations is well known Vardermonde’s
detertinant,

le—l . le—2 o 1

ng—l sz—Z -. o 1
s=| ... o =8 &-x 0 ®
i=12 - K
. P 1 ’ .
xKK-—l xKK—-2 cee 1 ‘] ’ ?”

As x; # x; we have 4 7# 0. Thus the solutions (a;, a,, - -+ ag) exist
and are independent of:n as well as (P1, P2s "~ Px). - Note that if some
x;=0 we have ag =0. ' I

Thus we have determined a set of constants (a,, a,, * . ag), which
depend only on x;'s such that (4) is ‘satisfied for any n> 0 and con:
sequently there exists constants (a,, dy, * * * dg)-such that for n> 0 we

have- .
o ’n+K I dlM’n+K—1 + + aKPLnI:=. 0.

- Thus the moments satisfy a linear difference cquatlon of. order
K and with constant coefficients. If weé use the operator E deﬁned
as E(w,) = Wy We have ‘

(EX +aEF 4 - aghply=0-n20. - . ™

4

. -
.{
L
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“ Corollary—As an immediate consequence of the above result
we observe that py' is expressible in terms of py, gy, "+ wx-y and
p. K+, 1S express1b1e in terms of p,’, - pg', thus p'ge, is expressible in
terms of po, py) **° Wr—. In general we can show that p,’ for any n >0
is expressible in terms of pg," py,” - p'k—; and these first K- moments
may be said to form the base for the sequence of moments :

-3. A simple method, for obtaining the linear dlﬂewnce equatlon
(2), can be given with the help of theory of equations.

Suppose for the moment that a;, a,, - ax are known then (4)
shows that x,, X,, - - Xx are the roots of the equation x¥ 4 a,x¥-1
+ -+ 4 ag =0 (2') which is nothing but the characteristic equation of
the linear difference equation (2). Thus if we choose

a=—2x, ay=(— 17 15} XiXg, * Ag= (— 1%x%, - '»}K’

equation (4) would be certain’ly-satisﬁed and the linear diﬁ"erence equa-
tion (7) expressed in the terms -of symbolic ‘operator E-can be written
as

K _ _
{1 = x)lu/ =0 n>o0. | (8)

i=1 . . - .
It is worth while to note that if PL=ps= " pg = 1/K then

the linear difference equation (2) is nothing but the Newton’s theorem
on the sum of the powers of the roots of equation (2°). '

£

Let w, (@) = Z‘ pi (x; — a)" be the n-th order moment about any

point a. Then these moments will also satisfy a linear difference
equation with constant coefficients and of order K. In fact such en

equation is given by

« o .
{U [E — (x; —'a)]} ' (@=0 nz=0.-
j=1 .
In particular if a is the mean of the distribution, we get the result that
central moments also satisfy a linear difference equation: similar to
2.

The above analysm in particular (8) gives us an mterestmg result
Suppose X and Y are two random variables havmg the same range
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of values X,, X5 ' Xy then their moments =atlsfy the same hnear
difference equation- (8). ! :

This obviously does not imply that their moments are came,-as
the moments will- be. also the functions of probabilities of assuming
values X;, X5, -+ Xz This difference will be reflécted only in the set of
initial conditions when we try to solve the equation (8).

To illustrate the point, let X and Y be bindmial ‘variates with

PlX=1]l=p; P[X=0]=gq; P[Y=1]=p
and = '
PIY=0]q.

Then the moments of X and Y both, satisfy the linear difference
équation, - S

E(E - 1)#"11, =0

0.
Woate — Moty +0 - pn =0 1.

\\/\\/

But the initial conditions for X are u,’ = 1; u,/ =p and those for ¥
are wo=1; m' =p". :
Thus for X we have w,’=p for n > 1 and for ¥ p,’ =p’ for
>1 and the two are not equal unless p =p’, i.e., X and Y are identical.

We may generahze this and say that if the two random varlables
¥ and Y have the same rangé of values x;, x,, ... xx and if their first
K moments are identical then the variables are also one and the same.

4. Now we consider the converse problem. Let X be the random
variable whose moments of all order exist. We further assume that
‘the .moments of X satisfy the difference equation (2). Then we want
to assert that random variable X takes at most K values.

The linear difference equation is

{E¥X + a,E¥ o ... + gt i, =0 n>0 - 2"

and the corresponding characteristic equation is.

CxE a4+ Hag=0. ' ' 2"

Two cases will have to be considered separately (i) when charac-
‘teristic equation has no repeated root (i) when. it has one or more
_lepeated roots. : .
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1st case—In this case characteristic equatlon has K dlStht Toots
Vl, xz, . xK and .

pn = C1X1" F CaXy" - ‘|— CxXg" ®
where ¢y, ¢y, ... cx Will be determmed by the initial condmons In
particular as po' =1 we have i » -
c1+cz+...+cx—1. (10)

Let ¢ (r) denote the characteristic function (c.f)).

(==}

$u) = ZM(%),

n=0

- Z W forxy Fcoxe” + ... + ch '}

K .. . e .
= X ¢, _ (11)

ja1

Now ¢ (¢) is a c.f. and as such must be bounded, and hence x; must
be all real, otherwise the function will remain.unbounded. As ¢ ()
is periodic with period 2m, as t— £ oo, qS(t) does-not tend to zero
and the corresponding distribution function (d.f)) is not everywhere
contmuous

: In order that (11) must be c. f it must sat1sfy a set of sufficient
conditions. Followmg Cramer {I] we have

(@) ¢ (¢) must be bounded- and continuous.
() $(0)=1.

then Sll'(.x, A) is real and non-negative: for real x and all 4 > 0.
- “We see that the above conditions (a) and (b) are satisfied for
2_ €5 e"” As Z,‘ c, =1 the conditions (a) and (b) are guaranteed

i=1

We observe that  (x,, 4) = ¢;4* and will be non-negative if and onh
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if ‘c,~.> 0; for j=1,2,... K and as Z,' c; = l we must have
j=1

0<c,.<1 for j£1;2,...K. (12)

' Thus the e.f. qS(r) ‘has the form Z’ce““” where Zc = | and ¢;=0

=1
From this one can immediately conclude.that & (1) is the c.f. of a random
variable X assuming values x;, Xs, . . . Xg With probabilities ¢y, ¢, ... .

2nd case—Suppose that characteristic equatiori,‘-"admits one root
of multiplicity r. Then if x; is the root, the solution. of the linear diffe-

rence equation gives

F’nl = (C]_ + Call + T + crnr_l) xln =+ cr+1x"r+1 + - + CrXg"

(13)
where ¢, ¢y, - cg are constants to be determmed by initial condlt-
tions, and in particular such that

po =Cp Cog 00t +eg=1
Now
- , (@)
=) o
n=0 .
[= =] . . K . I .
= Z (i e+ -+ —‘(”;,1) T /. Qt;x',l
fn=0 . _. f=r41 )
x :
= e P, _, (itxy) + X c;ets. (14
j=r+1

where P, (Z) denotes a polynomial in Z of (r — 1)-th degree. It
should be noted that constant term in- P,_; (itx;) is ¢;. Now 4 (2)
X -
consists of two parts one of which X c¢,e'%i is bounded. But P, (itx;)
. . j=r+1

is a polynomial of (r — 1)-th degree in (itx,) and is not bounded for
any t real unless r=1 in which case P, (itx;) =¢,. But we have
assumed that r > 1 hence P, (itx,) is not bounded, and consequently
¢ (1) is not bounded This contradicts our assumption that ¢ (7) the
c.f. exists. This shows that repeated root is not admissible,
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This completes the proof of the converse theorem, and shows
that the random variable can take at most K-values with non-zero
probability. , . o

TS - SUMMARY T f

It has been shown that the cliaracteristic property of the sequence
of moments {u,'} of a random variable that assumes only a finite number
of values is, that {u,’} must satisfy a linear difference equatlon with
constant coefficients and of finite 01der
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